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Abstract. We study the time evolution of a class of exactly solvable time-dependent quantum
systems with a time-dependent Hamiltonian given by a linear combination ofSU(1, 1) and
SU(2) generators with the help of the invariant Hermitian operator. The exact common solutions
of the Schr̈odinger equations for both theSU(1, 1) andSU(2) systems are obtained in terms of
eigenstates of the invariant operator. The adiabatic and non-adiabatic Berry phases are calculated
with the exact solutions. Moreover, we derive an explicit time-evolution operator which is used
to investigate the time-dependent two-photon squeezing states andSU(2) squeezing states. The
squeezing properties of the time-dependentSU(1, 1) coherent states are also discussed.

1. Introduction

The time-evolution of dynamical systems with an explicitly time-dependent Hamiltonian has
attracted considerable attention because of its various applications. Lewis and Riesenfeld
(RL) started investigating the dynamics and quantization of time-dependent systems long
ago with the method of Hermitian invariants [1, 2]. If the time function of the Hamiltonian
depends on a set of parameters, a cyclic evolution of the Hamiltonian in the parameter space
leads to an additional phase which has a geometric significance and is known as Berry’s
phase [3]. Two models explaining the Berry phase have been studied extensively [4–
12]. One of these is the time-dependent generalized harmonic oscillator, the Hamiltonian
of which is a time-dependent linear function of theSU(1, 1) generator and the other is
the two-level system with Hamiltonian consisting of theSU(2) generator. In quantum
optics, systems with time-dependent Hamiltonians are also of importance. The single-mode
degenerate parametric amplifier with classical pumps is a well known example [13], and it
is shown that a more general time-dependent Hamiltonian preserves theSU(1, 1) coherent
states [14]. The localization of atomic states in a driving field is another example of time
dependent systems [15]. The new interest in this time-dependent subject was motivated by
the study of dissipative processes, which possess a time-dependent effective Hamiltonian†
[16].

† For a simple model of dissipative systems, i.e. an harmonic oscillator coupled to the environment, the effective
Hamiltonian is found to be the Hamiltonian of harmonic oscillator with a mass increasing with time. See, for
example, [16].
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Because of the time-dependence the Hamiltonian is no longer a conserved quantity, and
the closed formula for time evolution of quantum states may be obtained with the help of
invariant Hermitian operators [1, 2]. However, the derivation of the exact time-evolution
operator for arbitrary time-dependent systems has not been given in the framework of
invariant operator theory. In the present paper we present a construction of the invariant
Hermitian operator in a manner as for both theSU(1, 1) andSU(2) systems. An advantage
of the invariant operator is that it allows one to obtain the exact solution of the Schrödinger
equation in terms of eigenstates of the invariant operator as well as the time-evolution
operator. Adiabatic and non-adiabatic Berry phases given in the literature are recovered
with the common exact solution. Moreover, we investigate the time-dependent two-
photon squeezing states andSU(2) squeezing states using the time-evolution operator. The
squeezing properties ofSU(1, 1) coherent states are also studied as an extension of [14].

2. Invariant Hermitian operator, time evolution of quantum states and the Berry
phase

The Hamiltonian which we consider is

Ĥ = ω(t)K̂0 +G(t)[K̂+eiϕ(t) + K̂−e−iϕ(t)] (2.1)

whereω(t), G(t) andϕ(t) are arbitrary real functions of time.̂K0 is a Hermitian operator,
while K̂+ = (K̂−)†.

The commutation relations of the operators are

[K̂0, K̂±] = ±K̂± [K̂+, K̂−] = DK̂0. (2.2)

The Lie algebra ofSU(2) andSU(1, 1) consists of the generatorŝK0 andK̂± corresponding
to D = 2 and−2 in the commutation relations (2.2), respectively. The time evolution of
quantum states is governed by the Schrödinger equation

i
d

dt
|ψ(t)〉 = Ĥ (t)|ψ(t)〉 (2.3)

where natural units ¯h = c = 1 are used throughout.
We start from an invariant Hermitian operatorÎ which satisfies the condition

i
∂

∂t
Î (t)+ [Î (t), Ĥ (t)] = 0 (2.4)

and Î † = Î . The key point of our method is the construction of the invariant operatorÎ

from the Hermitian operator̂K0 with a unitary transformation

Î (t) = R̂(t)K̂0R̂
†(t) (2.5)

where

R̂(t) = exp

[
γ (t)

2
(K̂+e−iβ(t) − K̂−eiβ(t))

]
. (2.6)

The time-dependent real parametersγ (t) andβ(t) are related toG(t), ϕ(t) andω(t) in the
Hamiltonian by the following auxiliary equations

γ̇ = 2G sin(ϕ + β) (2.7)

and
1

λ
(β̇ − ω) sin

λ

2
γ = G cos

λ

2
γ cos(ϕ + β). (2.8)
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HereG = √
2D and the equations have been derived from equation (2.4) by the substitution

of (2.5) and (2.6), and with the help of the following relations derived in Appendix A:

R̂†(t)K̂+R̂(t) = K̂+ cos2
λ

4
γ − K̂−e2iβ sin2 λ

4
γ − D

λ
K̂0eiβ sin

λ

2
γ (2.9)

R̂†(t)K̂−R̂(t) = K̂− cos2
λ

4
γ − K̂+e−2iβ sin2 λ

4
γ − D

λ
K̂0e−iβ sin

λ

2
γ (2.10)

R̂†(t)K̂0R̂(t) = K̂0 cos
λ

2
γ + 1

λ
(K̂+e−iβ + K̂−eiβ) sin

λ

2
γ (2.11)

R̂†(t)
[

i
∂

∂t
R̂(t)

]
= −2K̂0β̇ sin2 λ

4
γ + K̂+e−iβ

(
i
γ̇

2
+ β̇

λ
sin

λ

2
γ

)
+K̂−eiβ

(
−i
γ̇

2
+ β̇

λ
sin

λ

2
γ

)
. (2.12)

Using equations (2.7)–(2.12) one may check (see appendix B) thatÎ satisfies the condition
equation (2.4) and indeed is an invariant operator.

Let |n〉 be the eigenstate of̂K0 with eigenvalueKn i.e.

K̂0|n〉 = Kn|n〉. (2.13)

The eigenstates of̂I (t) are obviously given by

Î (t)|n, t〉 = Kn|n, t〉 |n, t〉 = R̂(t)|n〉. (2.14)

According to LR theory [1, 2], the general solution of the Schrödinger equation (2.3) is
written as

|ψ(t)〉 =
∑
n

Cne
iαn(t)|n, t〉 (2.15)

where the RL phase [1, 2] is

αn(t) =
∫ t

0
dt ′〈n, t ′|i ∂

∂t ′
− Ĥ (t ′)|n, t ′〉

=
∫ t

0
dt ′〈n|

[
R̂†(t ′)i

∂

∂t
R̂(t ′)− R̂†(t ′)Ĥ (t ′)R̂(t ′)

]
|n〉 (2.16)

is often considered as the non-adiabatic Berry phase if the parameters vary periodically.
Using equations (9)–(12) we obtain the exact phase of the eigenstate

αn(t) = kn

∫ t

0
dt ′[ω(t ′)−D�(t ′)] (2.17)

where�(t) is given by equation (B6) in the appendix. The main motivation of our procedure
in solving theSU(1, 1) and SU(2) time-dependent systems with the invariant operator
method is to find a more general and systematic way of dealing with Berry’s phase. The
original definition of Berry phase must be recovered in the adiabatic limit.

We now consider the adiabatic approximation where the terms containing time
derivativesṙ, β̇ in the auxiliary equations (2.7) and (2.8) are neglected. We then have

β = 2nπ − ϕ
1

λ
ω sin

λ

2
γ +G cos

λ

2
γ = 0 (2.18)

wheren is integer.
It is easy to verify with the help of equations (2.7)–(2.12) that

R̂†(t)Ĥ (t)R̂(t) = (ω +D�0)K̂0 (2.19)
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where

�0 = −4ω

λ2
sin2 λ

4
γ − 2

λ
G sin

λ

2
γ. (2.20)

ThereforeR̂(t)|n〉 becomes an instantaneous eigenstate of the HamiltonianĤ with time-
dependent eigenvalue [ω(t)+D�0(t)]Kn in the adiabatic limit†. As defined by Berry, the
second term in equation (2.16) is the usual dynamical phase while the first term is the Berry
phase denoted byγn. With the help of equation (2.12) and the commutation relation (2.2)
the Berry phase is obtained as

γn(T ) = 4D

λ2
Kn

∮
sin2

(
λ

4
γ

)
dϕ (2.21)

whereT denotes the period of parameter variation. So far the Berry phase (2.21) is still a
general formula for bothSU(2) andSU(1, 1) systems depending onD = ±2.

We now consider theSU(1, 1) case first whereD = −2 andλ = ±2i. The SU(1, 1)
Lie algebra has a realization in terms of boson creation and annihilation operatorsâ† and â
such that

K̂0 = 1
2(â

†â + 1
2) K̂+ = 1

2(â
†)2 K̂− = 1

2 â
2. (2.22)

The Hamiltonian (1) then describes the generalized time-dependent harmonic oscillator. If
ω andG are constant it reduces to a well known model in nonlinear quantum optics namely
the single-mode degenerate parametric amplifier with classical pumps [13]. Substitution of
D = −2, λ = ±2i andKN = 1

2(N + 1
2) into equation (2.21) yields

γn(T ) = (n+ 1
2)

∮
sinh2 γ

2
dϕ. (2.23)

Solving the adiabatic auxiliary equation (2.18), the Berry phase can be found as an explicit
formula depending only on the time-dependent parameters in the Hamiltonian, i.e.

sinh2 γ

2
= 1

2

ω − √
ω2 − 4G2

√
ω2 − 4G2

. (2.24)

Considering the two-dimensional parameter space with vectors in polar coordinates

R = (G(t) sinϕ(t),G(t) cosϕ(t)) (2.25)

the Berry phase is seen to be

γn(T ) = 1
2(n+ 1

2)
ω − √

ω2 − 4G2

√
ω2 − 4G2

∮
dϕ (2.26)

where
∮

dϕ = 2π for one period. The phase is due to the closed but not exact 1-form dϕ

in the multiply-connected two-dimensional parameter space [7].
For D = 2 with λ = ±2, Hamiltonian (1) possesses the symmetry of the dynamical

groupSU(2). A spinning particle in a time-varying magnetic field is a practical example

† Another solution of equations (2.7) and (2.8) in the adiabatic approximation is

β = (2n+ 1)π − ϕ
1

λ
π sin

λ

2
γ −G cos

λ

2
γ = 0

which, however, does not lead to the desired result, namelyR̂(t)|n〉 is an instantaneous eigenstate of Hamiltonian
Ĥ , which is a crucial aspect of the original definition of Berry’s phase. This may reflect a fact that the instantaneous
stationary Schr̈odinger equationĤ (t)|n(t)〉 = En(t)|n(t)〉 is not gauge covariant [7, 8] but i∂ψ(t)/∂t = Ĥ (t)ψ(t).
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for this case. LetK̂0 = Ĵ3 and K̂± = Ĵ±. The eigenstate of̂J3 is Ĵ3|j, n〉 = n|j, n〉. The
Berry phase can be derived from the combining formula (2.21),

γn(T ) = n

(
1 − ω − √

ω2 − 4G2

√
ω2 − 4G2

) ∮
dϕ. (2.27)

The Berry phase is again due to the closed but not exact 1-form dϕ which contributes 2π
for one period.

3. Time-evolution operator

With the help of equation (2.17), the general solution of the Schrödinger equation (2.15)
can be rewritten as

|ψ(t)〉 = R̂(t)e−iε(t)K̂0R̂†(0)|ψ(0)〉 (3.1)

where

ε(t) =
∫ t

0
dt ′ [ω(t ′)−D�(t ′)]. (3.2)

The time-evolution operator is obviously

Û (t, 0) = R̂(t)e−iε(t)K̂0R̂†(0) (3.3)

and enjoys all properties of a unitary evolution operator:

Û †(t, 0) = Û (0, t) = R̂(0)eiε(t)K̂0R̂†(t) (3.4)

Û (t2, t1) = Û (t2, 0)Û †(t1, 0). (3.5)

In the Heisenberg picture the time evolution of any operatorÂ is obtained with

Â(t) = Û †(t, 0)ÂÛ(t, 0). (3.6)

ReplacingD by ±2 in R̂(t), we have the time-evolution operators forSU(2) andSU(1, 1)
systems, respectively. Some applications of the time-evolution operators are given in the
following sections.

Before considering applications of the time-evolution operator we add a remark
concerning previous work on these exactly solvable time-dependent quantum systems. The
time-dependent Schrödinger equation is solved exactly with the elegant coherent state (CS)
method [17, 18] for Hamiltonians which are a linear function of generators of dynamical
(Lie) groups if its initial state is an arbitrary coherent state. The time-evolution operator for
Hamiltonian linear combinations of the generators ofSU(1, 1), SU(2) and the Heisenberg–
Weyl group is also given with the Wei–Norman method [19]. One advantage of the CS
method is that it enables solutions of problems quite different in origin. Our approach
is in the framework of LR theory for the purpose of dealing with the Berry phase. The
construction of the LR invariant operator in the same manner as for bothSU(1, 1) and
SU(2) systems may be in the spirit of the CS method. Different from the above methods,
however, our exact solution equation (2.15), which is constructed in terms of eigenstates of
the invariant operator, leads to the generalized Berry phase. The eigenstates of the invariant
operator reduce to the instantaneous eigenstates of the time-dependent Hamiltonian in the
adiabatic approximation so as to recover the original definition of Berry phase.
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4. Time-dependent two-photon squeezing states and the squeezing properties of
time-dependentSU (1, 1) coherent states

The boson realization of theSU(1, 1) Hamiltonian is

Ĥ = 1
2(â

†â + 1
2)ω(t)+ 1

2G(t)[(â
†)2eiϕ(t) + â2e−iϕ(t)]. (4.1)

In terms of the evolution defined in equation (3.6) whereD = −2 and λ = ±2i for
the SU(1, 1) case, the time evolution of creation and annihilation operators is found with
equation (3.9), i.e.

â†(t) = â†f ∗
1 (t)+ âf ∗

2 (t) (4.1)

â(t) = âf1(t)+ â†f2(t) (4.2)

where

f1(t) = cosh
γ0

2
cosh

γ

2
e−iε/2 − sinh

γ0

2
sinh

γ

2
ei(β0−β)eiε/2 (4.3)

f2(t) = cosh
γ0

2
sinh

γ

2
e−iβeiε/2 − sinh

γ0

2
cosh

γ

2
e−iβ0e−iε/2 (4.4)

with γ0 ≡ γ (t)|t=0, β0 = β(t)|t=0. The time-dependent parametersβ, γ andε are defined
as before. In the above derivation, the following identities are used,

R̂†(t)âR̂(t) = â cosh
γ

2
+ â†e−iβ sinh

γ

2
(4.5)

R̂†(t)â†R̂(t) = â† cosh
γ

2
+ âeiβ sinh

γ

2
(4.6)

and

eiεK̂0âe−iεK̂0 = âe−iε/2 (4.7)

and

eiεK̂0â†e−iεK̂0 = â†eiε/2 (4.8)

whereK̂0 = 1
2(â

†â+ 1
2). If ω andG are constant (whileϕ = ωt +ϕ) the Hamiltonian (4.1)

reduces to that for a degenerate parameter oscillator in nonlinear quantum optics which has
been studied in detail by Gerry [13]. To compare with the degenerate parametric oscillator
we assume thatϕ(t) has the form

ϕ(t) = −
∫ t

0
dt ′ ω(t ′)+ ϕ0 (4.9)

ϕ0 denoting the initial phase. With this choice ofϕ the auxiliary equations (2.7) and (2.8)
have the special solution

γ (t) = 2
∫ t

0
dt ′G(t ′) β(t) = 1

2π − ϕ0 +
∫ t

0
dt ′ ω(t ′). (4.10)

Substitution of (4.10) into equation (B5) and equation (3.2) yields�(t) = 0 andε(t) =∫ t
0 dt ′ω(t ′). Therefore

f1(t) = cosh
γ

2
e−iε/2 f2(t) = −i sinh

γ

2
ei(ε−ϕ0)/2. (4.11)

Following Gerry [14] we define the time-dependent Hermitian operator such that

x̂1 = 1
2[âeiε/2 + â†e−iε/2] (4.12)

x̂2 = 1

2i
[âeiε/2 − â†e−iε/2]. (4.13)
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The commutation relation is seen to be

[x̂1, x̂2] = 1
2i (4.14)

from which follows the uncertainty relation

V (x̂1)V (x̂2) > 1
16 (4.15)

where

V (x̂i) = 〈x̂2
i 〉 − 〈x̂i〉2 (4.16)

if the initial state is prepared in a coherent state|α〉 such thatâ|α〉 = α|α〉. Under time
evolution generated by the Hamiltonian (4.1), the variances calculated with equation (4.16)
using equations (4.1)–(4.4) are

V (x̂1,2) = 1
2[coshγ ± sinhϕ0 sinhγ ]. (4.17)

The± signs correspond to operatorsx̂1 andx̂2, respectively. For the initial phaseϕ0 = 1
2π ,

V (x̂1) = 1
4eγ (t) V (x̂2) = 1

4e−γ (t). (4.18)

We thus obtain a squeezed coherent state. Either quadraturex̂1 or x̂2 is squeezed depending
on the sign of the time-dependent parameterγ (t). Now consider the initial state being the
SU(1, 1) coherent state. The Casimir invariant forSU(1, 1) Lie algebra consisting of̂K0

andK̂± is given by

Ĉ = K̂2
0 − 1

2(K̂+K̂− − K̂−K̂+) (4.19)

which for a unitary irreducible representation has eigenvalueK(K − 1), whereK is the
Bargman index. Confined to the representation of positive discrete series, the states|n,K〉
diagonalize the compact generatorK̂0 such thatK̂0|n,K〉 = (n+K)|n,K〉. The operators
K̂+ andK̂− act as raising and lowering operators, respectively. For the boson realization of
equation (2.22),|n, 1

4〉 and |n, 3
4〉 represent the photon number states with 2n and (2n+ 1)

photons, respectively. TheSU(1, 1) coherent states are defined by

|η,K〉 = D(α)|0,K〉 (4.20)

where

D(α) = exp(αK̂+ − α∗K̂−)

= eηK̂+eξK̂0e−ηK− (4.21)

with α = − 1
2τe−iθ , η = − tanh(τ/2)e−iθ and ξ = ln(1 − |η|2). ThenK = 1

4 and 3
4

correspond to the even and odd coherent states, respectively. Suppose the initial state is the
SU(1, 1) coherent state (4.20). Under time evolution generated by the Hamiltonian (4.1)
the variances can be calculated in the same way using our time-evolution operator, while
〈x̂12〉 = 0 in this case. Then

V (x̂1,2) = K

[
coshτ(coshγ ∓ sinhγ sinϕ0)

±1

2
sinhτ

(
cosh2

γ

2
cosθ − sinh2 γ

2
cos(θ − 2ϕ0)

)
± sinhτ sinγ sin(θ − ϕ0)

]
. (4.22)

The desired squeezing properties may be obtained by adjusting the initial phaseϕ0 and the
parametersθ , τ . If G(t), ω(t) in the Hamiltonian (4.1) are constant the result (4.22) reduces
to that given in [14].
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5. Time-dependentSU (2) squeezing states

ReplacingK̂0 and K̂± by Ĵ3 and Ĵ±, respectively, and noting thatλ = √
2D = 2 in the

SU(2) case, the Hamiltonian we considered is

Ĥ (t) = ω(t)Ĵ3 +G(t)[Ĵ+eiϕ(t) + Ĵ−e−iϕ(t)]. (5.1)

Let |j,m〉 be the eigenstates of̂J3 andĴ 2 = Ĵ 2
3 + 1

2(Ĵ+Ĵ− + Ĵ−Ĵ+). As a matter of practical
interest we again consider the caseϕ(t) = − ∫ t

0 dt ′ ω(t ′)+ϕ0 in the auxiliary equations (2.7)
and (2.8) which provide the solution ofγ (t) andβ(t) given in equation (4.10). We then
have�(t) = 0 andε(t) = ∫ t

0 dt ′ ω(t ′). Substitution of the above into equation (3.6) yields
the time-evolution operator in the simple form

Û (t, 0) = exp
[γ

2
(Ĵ+e−iβ − Ĵ−eiβ)

]
e−iεĴ3. (5.2)

Observing that

e−iεĴ3Ĵ±eiεĴ3 = Ĵ±e±iε (5.3)

the time evolution ofĴ3 and Ĵ± is seen to be

Ĵ3(t) = Ĵ3 cosγ + 1
2i sinγ [Ĵ−e−iϕ0 − Ĵ+eiϕ0] (5.4)

Ĵ±(t) = e±iε
[
Ĵ± cos2

γ

2
− Ĵ∓ sin2 γ

2
e∓i2ϕ0 ∓ iĴ3 sinγe±iϕ0

]
. (5.5)

We again define the Hermitian operatorsĴ1 and Ĵ2

Ĵ1 = 1
2[Ĵ+e−iε + Ĵ−eiε ] (5.6)

Ĵ2 = 1

2i
[Ĵ+e−iε − Ĵ−eiε ] (5.7)

such that

[Ĵ1, Ĵ2] = iĴ3 (5.8)

from which follows the uncertainty relation

V (Ĵ1)V (Ĵ2) > 1
4|〈Ĵ3〉|2 (5.9)

where

V (Ji) = 〈J 2
i 〉 − 〈Ji〉2. (5.10)

Next we consider the system as being prepared in the eigenstate|j,m〉 initially. In terms
of equations (5.6) and (5.7) the time evolution of the variances is obtained as

Vj,m(Ĵ1(t)) = 1
2[j (j + 1)−m2][1 − sin2 ϕ0 sin2 γ ] (5.11)

Vj,m(Ĵ2(t)) = 1
2[j (j + 1)−m2][1 − cos2 ϕ0 sin2 γ ]. (5.12)

The time evolution of the expectation value ofĴ3 is

〈Ĵ3(t)〉 = m cosγ. (5.13)

Form = ±j , ϕ0 = 1
2π ,

Vj,±j (Ĵ1) = 1
2j cos2 γ 6 1

2j | cosγ | (5.14)

indicating a stable squeezing of̂J1 quadrature. TheĴ2 quadrature is squeezed ifm = ±j
and ϕ0 = 0. The minimum uncertaintyV (Ĵ1)V (Ĵ2) = 0 is reached whenm = 0 or
r(t) = (n + 1

2)π . The basic concept of squeezing spin (or angular momentum) states has



Time evolution of quantum systems 1781

been given in [20]. Spin squeezing is an important problem. Since diverse physical systems
can be described by theSU(2) generators, apart from the real spin of particles and magnons,
these systems are, for example, collective two-level atoms, cooper pairs in superconductors
and macroscopic two-state systems, such as interferometers, and Josephson junctions.

Whenω(t) is a constant andj = 1
2 Hamiltonian (5.1) reduces to the equation for a

single two-level atom driven by a classical field. The time-evolution operator derived in
this paper may be useful for a detailed study of the time-evolution properties of the system,
for instance the localization of atomic states due to the influence of the driving field [15].

6. Conclusion

Time evolution ofSU(1, 1) andSU(2) time-dependent quantum systems is solved in the
framework using invariant Hermitian operators. The key point of our procedure is the
construction of the invariant operator with equation (2.5), which is particularly useful in
deriving the generalized Berry phase and for recovering the original definition of the Berry
phase in the adiabatic limit. The time-evolution operator is also obtained with the invariant
operator.
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Appendix A

A.1. Proof of equations (2.9)–(2.11)

We define the following functions of parameters

T1(s) = R̂†(t)K̂0R̂(t) T2(s) = R̂†(t)(K̂+e−iβ + K̂−eiβ)R̂(t) (A1)

with s = γ /2 whereγ is the parameter in̂R(t). Differentiation ofT1 andT2 with respect
to s leads to

∂T1

∂s
= R̂†(t)[K̂0, K̂+e−iβ − K̂−eiβ ]R̂(t)

= R̂†(t)[K̂+e−iβ + K̂−eiβ ]R̂(t) = T2(s) (A2)

and

∂T2

∂s
= −2DT1. (A3)

Solving the ordinary differential equations (A2) and (A3) with respect tos we have

T2(s) = c1eiλs + c2e−iλs (A4)

T2(s) = [−iλc1eiλs + iλc2e−iλs ]/2D (A5)

whereλ = √
2D.
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Using the initial conditionsT1(0) = K̂0, T2(0) = K̂+e−iβ + K̂−eiβ the integration
constants are determined by

c1 + c2 = K̂+e−iβ + K̂−eiβ c1 − c2 = 2i

λ
DK̂0. (A6)

Noting that

R̂†(t)[K̂+e−iβ − K̂−eiβ ]R̂(t) = K̂+e−iβ − K̂−eiβ (A7)

equations (2.9)–(2.11) follow from (A4)–(A7).

A.2. Proof of equation (2.12)

T̂ †(t)i
∂

∂t
R̂(t) = R̂†(t)

[
iγ̇
∂

∂γ
R̂(t)+ β̇R̂†(t)i

∂

∂β
R̂(t)

]
= iγ̇ [K̂+e−iβ − K̂−eiβ ] + β̇R̂†(t)i

∂

∂β
R̂(t) (A8)

where

γ̇ = ∂γ

∂t
β̇ = ∂β

∂t
.

Again define a function ofs

F (s) = R̂†(t)i
∂

∂β
R̂(t) (A9)

with s = γ /2. Then

∂F

∂s
= R̂†(t)

[
i
∂

∂β
, K̂+e−iβ − K̂−eiβ

]
R̂(t). (A10)

Since [i∂/∂β, e−iβ ] = e−iβ and [i∂/∂β, eiβ ] = −eiβ , we have

∂F

∂s
= R̂†(t)[K̂+e−iβ + K̂−eiβ ]R̂(t)

= T2(s) = c1eiλs + c2e−iλs . (A11)

Integrating (A11) yields

F(s) = c3 + c1

iλ
eiλs − c2

iλ
e−iλs . (A12)

SinceF(0) = 0, the new integration constant is

c3 = (c2 − c1)/iλ (A13)

wherec1 andc2 are calculated from (A6).F(s) is obtained by substitution ofc1, c2 andc3

into (A12). Then we obtain equation (2.12) by replacingR̂†i∂R̂(t)/∂β in equation (A8) by
F(s).
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Appendix B. Proof of Î(t) being invariant

i
∂

∂t
Î (t) =

[
i
∂

∂t
R̂(t)

]
K̂0R̂

†(t)+ R̂(t)K̂0

[
i
∂

∂t
R̂†(t)

]
= R̂

[
R̂†

(
i
∂

∂t
R̂

)]
K̂0R̂

† + R̂K̂0R̂
†
[
R̂

(
i
∂

∂t
R̂†

)]
. (B1)

Using (
i
∂

∂t
R̂

)
R̂† + R̂

(
i
∂

∂t
R̂†

)
= 0

we have

i
∂

∂t
Î (t) = R̂

[
R̂†

(
i
∂

∂t
R̂

)
, K̂0

]
R̂†. (B2)

Since

[Î (t), Ĥ (t)] = [R̂K̂0R̂
†, Ĥ (t)]

= R̂[K̂0, R̂
†Ĥ (t)R̂]R̂†. (B3)

Therefore

i
∂

∂t
Î (t)+ [Î (t), Ĥ (t)] = R̂

[
K̂0, R̂

†Ĥ (t)R̂ − R̂†
(

i
∂

∂t
R̂

)]
R̂†. (B4)

Substituting equations (2.9)–(2.12) into equation (B4) and using equation (2.7) and
equation (2.8) we have

i
∂

∂t
Î (t)+ [Î (t), Ĥ (t)] = R̂(t)[K̂0, {ω(t)+D�(t)}K̂0]R̂†(t) = 0. (B5)

Thus Î (t) indeed is an invariant operator, where

�(t) = (β̇ − ω)
4

λ2
sin2 λ

4
γ − 2

λ
G sin

λ

2
γ cos(ϕ + β). (B6)
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